
Seeking universal approximation for continuous
limits of GNNs on large random graphs

Matthieu Cordonnier1, Nicolas Keriven2, Nicolas Tremblay1, Samuel Vaiter3

1CNRS, Gipsa-lab, Univ. Grenoble-Alpes
2CNRS, IRISA
3CNRS, LJAD

Graphs and large graphs

Database/Knowledge
graph

Computer network

Brain connectivity network

Protein interaction
network

Gene regulatory network

Internet

Molecule Social network Transportation network

Scene understanding network

3D mesh

● Many types of data can be
represented as graphs

“if all you have is a hammer, everything
looks like a nail”

● Many of these graphs are large, with
macroscopic properties

● GNNs have become the de-facto
state-of-the-art models

GNNs and large graphs?
● (Even) compared to regular NNs, many properties of GNNs are still quite mysterious.

● Eg: universality of NNs is known since the 90s, for GNNs it is still a very active field.

● Most analyses of GNNs are discrete/combinatorial in nature.
● WL-test: Can a GNN distinguish two non-isomorphic graphs?
● Can a GNN count triangles? compute the diameter of a graph? etc.

GNNs and large graphs?
● (Even) compared to regular NNs, many properties of GNNs are still quite mysterious.

● Eg: universality of NNs is known since the 90s, for GNNs it is still a very active field.

● Most analyses of GNNs are discrete/combinatorial in nature.
● WL-test: Can a GNN distinguish two non-isomorphic graphs?
● Can a GNN count triangles? compute the diameter of a graph? etc.

● Large graphs may “look the same”, but are never isomorphic, of different size, etc.

● A recent trend is to use statistical graph models to understand GNNs’ macroscopic behaviors
[see works by Ruiz et al., Levie et al., Keriven et al...]

“From discrete to continuous”

GNNs

Most GNNs are based on message-passing
At each layer, each node receives
“messages” from its neighbors.

GNNs

Most GNNs are based on message-passing
At each layer, each node receives
“messages” from its neighbors.

Classical: use of a graph matrix (normalized adjacency, normalized Laplacian...)

GNNs

Most GNNs are based on message-passing
At each layer, each node receives
“messages” from its neighbors.

Classical: use of a graph matrix (normalized adjacency, normalized Laplacian...)

Can also perform “global
pooling” to compute whole
graph quantity

Output node labels:

(Example of most) random graphs

Long history of modelling large graphs with
random generative models

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)

(Example of most) random graphs

Long history of modelling large graphs with
random generative models

Latent position models (W-random graphs, kernel random graphs, graphon...)

Unknown latent variables in
a latent space

(most often) independent Edges

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)

(Example of most) random graphs

Long history of modelling large graphs with
random generative models

Latent position models (W-random graphs, kernel random graphs, graphon...)

Unknown latent variables in
a latent space

(most often) independent Edges

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)

Includes Erdös-Rényi,
Stochastic Block Models,
Gaussian kernel, epsilon-
graphs...

 may vary with to

model graph sparsity

Ex:

In many cases, will “converge” to an operator (ex: adjacency to kernel integral operator)
One can then define a continuous GNN that propagates functions over the latent space:

Continuous GNNs

Global pooling:

In many cases, will “converge” to an operator (ex: adjacency to kernel integral operator)
One can then define a continuous GNN that propagates functions over the latent space:

Continuous GNNs

Example of convergence
result:

If, for all f:

Then:

Valid for adjacency, Laplacian, degree-normalized versions...

Global pooling:

GNN applied to a sampled
function converge to the sampled
output of the cGNN

Expressivity of cGNNs

Expressivity of cGNNs have been examined a few times:

● [Keriven, Vaiter. NeurIPS 2023]: for a fixed input signal, range of output functions

● [Boker et al. NeurIPS 2023]: extension of WL-test to graphons (ie for graph-tasks)

Expressivity of cGNNs

Expressivity of cGNNs have been examined a few times:

● [Keriven, Vaiter. NeurIPS 2023]: for a fixed input signal, range of output functions

● [Boker et al. NeurIPS 2023]: extension of WL-test to graphons (ie for graph-tasks)

Here: universality of cGNNs as nonlinear operators between functions (fixed graph model)

Expressivity of cGNNs

Expressivity of cGNNs have been examined a few times:

● [Keriven, Vaiter. NeurIPS 2023]: for a fixed input signal, range of output functions

● [Boker et al. NeurIPS 2023]: extension of WL-test to graphons (ie for graph-tasks)

Here: universality of cGNNs as nonlinear operators between functions (fixed graph model)

Def: Universality For all: compact, operator,

There exists such that

Neural Operators

This is reminiscent of Neural Operators [Tianping & Hong 1995, Lu et al. 2021]

● Used a lot to solve PDEs

● Universality known since the 90s! [Tianping & Hong 1995]

Neural Operators

This is reminiscent of Neural Operators [Tianping & Hong 1995, Lu et al. 2021]

[Li et al. 2021]

Universal Neural Operators? 1/2
How does one construct universal NOs?

1) Encoder into a finite-dimensional space

2) Approximate a continuous mapping with an MLP

3) Decoder from another finite-dimensional space

Universal Neural Operators? 1/2
How does one construct universal NOs?

1) Encoder into a finite-dimensional space

2) Approximate a continuous mapping with an MLP

3) Decoder from another finite-dimensional space

When is this possible?

When one can construct finite-rank operators
converging to identity

 → so-called approximation property of Banach spaces

Universal Neural Operators? 2/2
For instance, in Hilbert spaces , with bases

is universal

Universal Neural Operators? 2/2
For instance, in Hilbert spaces , with bases

 → In practice, are also approximated with MLPs!

is universal

Universal Neural Operators? 2/2
For instance, in Hilbert spaces , with bases

 → In practice, are also approximated with MLPs!

Can we do this with cGNNs?

 → No! We don’t know the latent variables , so we cannot explicitely compute MLPs in
the latent space

is universal

Universal Neural Operators? 2/2
For instance, in Hilbert spaces , with bases

 → In practice, are also approximated with MLPs!

Can we do this with cGNNs?

 → No! We don’t know the latent variables , so we cannot explicitely compute MLPs in
the latent space

is universal

How do we recover a basis of from ?

A spectral approach
Assume is full-rank the eigenfunctions are a basis of L2 →

A spectral approach

Can we just diagonalize ?

Assume is full-rank the eigenfunctions are a basis of L2 →

 → we know

A spectral approach

 → technically yes, but...

1) GNNs cannot directly diagonalize (… but not a real pbm: Positional Encoding, or clever filtering)

Can we just diagonalize ?

Assume is full-rank the eigenfunctions are a basis of L2 →

 → we know

A spectral approach

 → technically yes, but...

1) GNNs cannot directly diagonalize (… but not a real pbm: Positional Encoding, or clever filtering)

2) Sign(/basis) indeterminancy: cannot generalize!

Can we just diagonalize ?

at each new graph/diagonalization algorithm

Assume is full-rank the eigenfunctions are a basis of L2 →

 → we know

Sign indeterminancy?

● Not a problem for filtering:

Invariant to sign change!

Sign indeterminancy?

● Not a problem for filtering:

● Very much a problem for us!

Invariant to sign change!

has no reason to be sign invariant for each coordinate!

Sign indeterminancy: quick fix

We are working within a compact of functions anyway, let’s assume that it is in a fixed orthant

s.t. there exists basis of eigenfunctions of s.t.

Assume is full-rank (with simple eigenvalues)

Assume:

w.l.o.g.

A spectral NO

1)Diagonalize

2)Solve sign indeterminancy by

3)Return

A spectral approach:

A spectral NO

1)Diagonalize

2)Solve sign indeterminancy by

3)Return

Theorem:
Universal on domains

A spectral approach:

Actual GNNs?
All this spectral stuff is a bit weird. Can we recover the eigenfunctions by actual GNNs?

Actual GNNs?
All this spectral stuff is a bit weird. Can we recover the eigenfunctions by actual GNNs?

Since eigenvalues are separated and , can be recovered by filtering and normalization

Actual GNNs?
All this spectral stuff is a bit weird. Can we recover the eigenfunctions by actual GNNs?

Since eigenvalues are separated and , can be recovered by filtering and normalization

Since universality is up to , they can
even be replaced by polynomial filters!

Actual cGNNs

Theorem:
cGNNs are universal on domains

Actual cGNNs

Theorem:
cGNNs are universal on domains

Proof:

are universal

● Polynomial filtering

● Global pooling to compute norm/inner products

● All operations (multiplication, normalization, square root...) can be approximated by MLPs

Actual cGNNs

Theorem:
cGNNs are universal on domains

Nothing more that regular cGNNs!! (with intermediate global poolings)

Proof:

are universal

Conclusion

● “From discrete to continuous” is a fruitful approach for GNNs

● Link with Neural Operators

● Still many things to explore/understand in the continuous world!

Outlooks

● Getting rid of the weird sign assumption?

 → SignNet-like architecture [Lim et al. 2022]:

Outlooks

● Getting rid of the weird sign assumption?

● More general Message-Passing GNN? (GANs...)

 → SignNet-like architecture [Lim et al. 2022]:

 → Convergence is known

Non-linear operator filtering!

Cordonnier et al., Convergence of Message Passing Graph Neural Networks
with Generic Aggregation On Large Random Graphs, 2023

Thank you!

nkeriven.github.io

Come work in the beautiful city of Rennes!

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 17
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19

